分钟。这样,便会有 5 种安排:
第 1 种,可以在一项工作完成以后,再进行第二项工作,最后进行第三
项,这样总计要花 65 分钟时间;
第 2 种是在挖坑的同时派人去运树苗,在完成挖坑工作以后再组织人力
挑水,这样需要 50 分钟;
第 3 种是在挖坑的同时就派人去挑水,在挑完水后再去运树苗,这样需
要 45 分钟;
第 4 种是在挖坑的同时就派人去挑水,在挖完坑后又派人去运树苗,这
样只需花 35 分钟;
第 5 种安排是 3 项工作同时开始,那么,总共只需要 30 分钟就可以完成
任务了。
很显然,在人力、工具等条件都允许的情况下,第 5 种安排最省时间,
其他安排费时间多,会出现“窝工”现象。
同样,对于一个生产汽车的工厂,厂长一定会安排不同的车间(分厂),
分别生产汽车的发动机、轮胎、底盘、外壳、仪表、座椅、车灯、电器等零
部件,最后进行总体装配,一辆辆崭新、漂亮、别致的汽车就会从流水作业
线上徐徐开出来。任何一位厂长都不会安排先生产一种零部件,完成后再生
产第二种,一直到最后一种零部件制造出来后,再去一一组装。这样,无疑
要浪费许多时间,没有生产效率。
建筑队要盖一幢楼房,一定要打地基,运砖瓦石、水泥、钢材等建筑材
料,砌砖,安门窗,装水管和下水道,粉刷墙面等,如果安排不当,就会出
现窝工现象。
生活中也有许多例子,需要人们开动脑筋巧妙安排。你可能听过这样一
个故事,讲的是一个人挑着一担菜,牵着一只羊,带着一条狗过河,河边只
有一小小的船,因船太小,当人不在场时,不能把狗和羊留在一起,因为狗
要咬羊,也不能把羊和菜留在一起,因为羊会把菜吃掉怎知办?这个人运用
他的聪明才智,巧妙安排,把三者安全顺利地带过了河。你知道他是怎样干
的吗?
如果在家里做饭烧菜,你一定会先煮米饭(或蒸馒头),并利用煮饭的
时间去洗菜、切菜,等饭(或馒头)做好了,你的准备工作也做得差不多了,
然后再烧菜,这样可节约不少时间。
当你仔细观察一下周围发生的事情,或者回想一下你的经历,你就会了
解到,生活当中有着许多精明的“管家”——他们能管理好班级,管理好企
业,管理好农业生产。这里介绍的内容,就是用图和网络的方法,解决前面
提到的各种问题,帮助人们统筹安排时间,精打细算,提高工作效率。
著名的哥尼斯堡七桥问题
欧洲有一座城市,叫哥尼斯堡。有一条河流经城区,河中有两个小岛,
共有七座桥将河的两岸和两个小岛联接起来。图中 A、B 表示两岸,C、D 表
示两个小岛,数字 1 至 7 表示七座桥。
有人提出一个问题,能不能从某一地点出发(例如 D 点),通过七座桥
各一次(即不能重复过桥),然后回到出发地(也就是 D 点)?这就是有名
的哥尼斯堡七桥问题。
1736 年,数学家欧拉发表了一篇论文,将上面的问题用下图表示出来。
同样地,图上 A、B 表示两岸,C、D 表示两个小岛,数字 1 至 7 表示七座桥。
图中的点叫顶点,用来表示具体的事物。图中的线叫做边,用来表示事
物之间的某种关系。这种图不是按比例画出的,边长不代表真正距离或其他
数量关系,顶点和边的位置也不与实际位置一一对应。这样,就可以将复杂
的工程系统、运输系统、管理系统等等简化成图,来解决工程任务花费时间
最少、运输距离最短、管理费用最省等最优化问题。
欧拉将哥尼斯堡七桥问题抽象成一个图,将上述过桥问题抽象成一笔画
问题后,他证明,上图中的顶点都只与奇数条边相连接,因此不能将图一笔
画成而不重复任一条边。假设第 4 条桥不是连接 C、D 小岛,而是连接 A、B
两岸,则可用下图表示。可以明显地看出各点均与偶数条边相连接,此图就
可以不重复地一笔画成。
我们再看一下架设电话线的例子。在下图中,要在各单位之间架设电话
线。电话线必须将它们连接,但为了节省线路,两单位之间也可以通过其他
单位接通电话,例如乙村可以通过甲村、汽车站同学校接通电话,因此不必
在乙村与学校间再架设一条电话线。这种简单形式的图就是“树”。
由于每两单位之间架线的长度不同,因此,实际上要求找到所架电线最
短的“树”,按这“树”的样子架线,所花时间最少、也最省钱。
架设电话线的“树”
供应问题
请看供水系统管路图,某村供水站要向新开垦的土地送水浇地,供水管
路要经过东南西北 4 片地区,每段管线最大供水能力分别表示在线中边上,
如供水站向南片土地每分钟最多能供应 5 立方米水,再由南片向东片最多每
分钟供应 2 立方米水等等。而这种有发点(如供水站)和收点(如新开垦地)
的有方向的图(从发点开始到收点为止)就组成了一个网络。研究供水站通
过这个网络每分钟最多能供给新开地多少立方米的水,这就是网络最大流问
题。
古代战争中就非常重视供应问题,“兵马未到,粮草先行”,说的就是
这个问题。现代化的战争供应问题更加复杂。因为现代战争,是对多兵种、
高技术、快速反应的全面考验,在一次战役之前,准备工作显得十分重要、
紧迫。因此,战前往往要研究从后方向前线调运各种武器弹药,集结各地作
战兵员和医疗、后勤保障、军事技术等各类人员,储备燃料、食品、饮用水、
药品等等问题。
还有许多系统都需要研究最大质量问题。如春节期间,铁路部门要研究
铁路网络最大客运能力,以便安排列车将旅客送回家过年。发电厂(还有水
电站)要研究电网最大送电能力,以满足工厂、农村和人民生活用电的需要。
油田和炼油厂要研究输油管网络的最大输油能力。电话局要研究电话网的最
大通话容量,等等。
邮路捷径
当你收到邮递员送来的报纸、信件的时候,你一定很高兴能从报纸上了
解到国内外大事,从信中知晓亲戚朋友的消息。但不知道你是否注意到,邮
递员每次送信都是沿着相同的街道、相同的方向送信。你会说,这些绿衣天
使熟悉这些街道,甚至熟悉许多家庭,他们习惯于沿同样的路线送信,不管
酷暑寒冬、刮风下雨,日复一日,年复一年。如何为他们选一条路程最短的
“邮路”,使他们能相对轻松地完成他们的工作呢?这个问题是 1962 年由我
国数学家管梅谷教授提出的,国际上因此而称为中国邮递员问题。
我们看一看下图所表示的一个简单的街区路线图,数字表示街道的长度
(米)。那么,假设邮递员从邮局出发,沿什么路线送完信件返回邮局,所
走的路最少呢?