在自然界有两种不同的变化方式。一种是光滑的、连续不断的变化,如
生命有机体的连续生长、地球绕太阳连续不断地旋转、流体(如水、油、气)
的连续流动、气温的连续变化等等。对这种光滑的、连续不断的渐变现象,
人们已较成功地建立了各种模型描述其发展规律。与此同时,自然界存在着
另一种大量的不连续的飞跃式的变化,如水沸冰融、岩石金属的突然断裂、
桥梁突然塌陷,以及火山、地震、山洪的突然爆发均属于这类变化。此外,
细胞的分裂、物种的绝灭、飞机的坠毁、战争的爆发、经济危机的产生、工
厂的倒闭、政权的变更等等都是事物的形态、性质、状态从一种形式突然地
跳跃到根本不同的另一种形式的不连续变化,我们将这种突然之间发生的变
化称之为“突变”,也有人称之为“灾变”,意指巨大的、灾难性的突然变
化。
对于由于这种突变现象而造成的具有不连续过程的系统,适用于连续系
统的传统分析数学已显得无能为力。那么,有没有用来描述和解决自然界和
社会现象中大量存在的各种飞跃和不连续过程的数学工具呢?“山重水复疑
无路,柳暗花明又一村”,以法国巴黎高级科学院著名的数学教授——1958
年国际菲尔兹数学奖(世界上数学最高奖)获得者雷内·托姆博士为酋首一
批科学家创建的“突变论”,为我们提供了一种新颖的思考方法。
突变论运用更为高深的数学理论为工具,来研究自然界和社会现象中的
各种形态、结构的非连续性突变,从而引起了数学家、哲学家、生物学家、
社会科学家以及系统科学家的广泛注意和极大兴趣,有人高度评价突变论是
“自牛顿、莱布尼兹以来,数学界的又一次最伟大的智力革命”。因为牛顿、
莱布尼兹用他们的理论——微积分解释了所有连续的、渐变的现象,而托姆
的突变理论则解释了所有不连续的、突变的现象。
在突变论中,把那些作为突变原因的连续变化因素称之为“控制变量”,
把那些可能出现突变的量称为“状态变量”。以水为例,给水连续不断地加
温、加压,其温度和压强都是连续变化的,但当这些连续变化的量一旦达到
某一临界点——沸点,即水在一个大气压下,温度达 100℃时便会引起不连
续的突变——水突然沸腾,转化为水蒸气。在这个水的相变(指水从液态转
变为汽态)模型中,“控制变量”就是由人们控制、掌握的两个量——温度
和压强,它们始终是连续变化的;而“状态变量”则是能表示水的不同形态
特征的密度(密度高的状态对应着液态,密度低的状态代表气态)。显然,
是控制变量温度和压强连续不断的变化,导致了状态变量密度的“突变”。
突变理论最初是由托姆在 60 年代中期发展起来的,他的意图是把数学这
个“硬”工具应用于生物学这门“软”科学。托姆论证说,生物学家不能根
据他们丰富的实验事实来构造一个综合理论,主要因为他们缺乏为完成这个
任务所需要的数学知识。
突变论发展至今,仍旧着力于数学基础的建立以及突变现象的解释,而
控制乃至预测突变难度还很大,其应用还处于初创阶段,这是因为突变论还
只是一门诞生刚 20 年的新兴学科,在理论上尚不够成熟完备,是一块有待开
垦的处女地。
目前,突变论已在物理、化学、地质学、医学、生态学、工程技术以及
社会科学、经济决策等方面得到了广泛的应用,并取得了一批卓有成效的成
果。显然,一种新理论的诞生与发展、一项新的发现从问世到成熟,不是一
蹴而就的事情,需要几代人的不断努力。“突变化”的最终“突破”,有待
于 21 世纪科学家们的共同努力。
Эͬѧ
协同学一词来自希腊文,其含义是“一门关于协作的科学”,或者说“一
个系统的各个部分(子系统)协同工作”。协同学是以研究完全不同的学科
间存在着的共同特征为目的的一门横断学科,它以信息论、控制论、突变论
等现代学科理论为基础,通过运用类比的方法,针对各学科广泛存在的无序
到有序的现象建立了一整套数学模型和处理方案,从而可把在一门学科中所
取得的研究成果,很快地推广到其他学科的类似现象上去。
协同学与耗散结构论一样,也是研究远离平衡态的开放系统在保证与外
界之间有物质流或能量交换的条件下,能够自发地产生一定的有序结构或功
能行为的一种理论。它以无序到有序的转变为主要内容,不仅包括非平衡态,
也包括平衡态中的相变。协同学力图揭示出各不同学科之间所存在的共同特
征和共同规律,并认为自然界中各种貌似不同的现象之间具有内在的“神似”
的联系。因而协同学解决问题的思想与方法同目前其他解决问题的思想与方
法相比较,具有更加深远的意义。
协同学的创始人是德国著名理论物理学家赫尔曼·哈肯教授。他在本世
纪 60 年代初从事激光理论研究,曾成功地建立了一整套的激光理论。他在研
究中发现,激光在远离平衡时所发生的从无序到有序的变化与热平衡系统中
所发生的相变存在着深刻的相似,从而促使他进一步研究了很多不同学科中
存在的非平衡有序结构形成的现象,如在化学反应中出现的颜色由红变蓝,
再由蓝变红的所谓“别洛索夫——扎玻廷斯基反应”,在生物学中竞争选择
而造成的野兔数及其天敌山猫数变化的“时间振荡”等等。结果他发现,这
些结构从无序到有序的形成过程,遵循着与激光的形成过程相同或相似的方
程和规律。这充分说明,尽管它们的演化机制有所不同,然而它们形成的有
序结构或功能的机理是相同的。这些发现,奠定了哈肯等人创立协同学的基
础。
协同学主要研究一类由许多子系统构成的系统——这些子系统的性质可
能截然不同,如激光系统中的原子、光子,生物系统中的动物、植物,社会
系统中的党派、集团,经济系统中的厂矿、乡镇等等。子系统是系统的微观
世界,而系统则表现子系统的整体行为。协同学研究这些子系统如何协作而
形成系统空间结构、时间结构。协同学特别研究这种有序结构是如何通过自
组织的方式形成的。
协同学力图解决的一个主要问题是,是否存在着一个一般原理,它支配
着所有这些彼此协同作用的系统?协同学的主要任务是寻找某种能够支配存
在于各类系统中的自组织现象的一般原理,并且该一般原理与系统组成部分
(要素)的性质无关。如果有这样的原理的话,我们就可以把已知系统的规
律,推广到我们尚不熟悉、尚未了解的未知系统。特别是我们可以把无生命
世界中简单得多的系统的组织过程作为研究起点,而后将发现的基本原理用
来阐明和解释极端复杂的生物现象,并最终研究解决生命物质的起源问题。
世界医学史话
三体液说——古印度医学
古代印度作为文明古国,它的医学起源是很早的,有据可考的就可以追
溯到公元前 2000 年的吠陀时代。梵语“吠陀”(Veda)就是知识的意思,是
当时人的诗集,其中就有关于药用植物的记载。文中还描述了一些疾病,很
像现在的结核和麻风。
在古印度,医生最早是僧侣们兼职的,那时正处于神医学的医学时期,
人们认为只有僧侣与神最接近,所以只有他们有资格为众生解除病痛。后来,
随着医学的发展,渐渐地出现了一批专门从医的人,他们的工作经验和实际
操作技术都比僧侣们要强。久而久之,医生就独立出来了,但医生的地位也